博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
BAIR论文:通过“元学习”和“一次性学习”算法,让机器人快速掌握新技能
阅读量:5997 次
发布时间:2019-06-20

本文共 1211 字,大约阅读时间需要 4 分钟。

我们都知道,深度学习是在大数据的背景下火起来的,传统的基于梯度的深度神经网络需要大量的数据学习,而绝大多数的深度学习内容否基于大数据量下的广泛迭代训练,当遇到新信息时往往会出现模型失效的情况从而需要重新进行学习。在机器人领域,深度神经网络可以是机器人展示出复杂的技能,但在实际应用中,一旦环境发生变化,从头学习技能并不可行。因此,如何让机器“一次性学习”,即在“看”了一次演示后无需事先了解新的环境场景,能在不同环境中重复工作尤为重要。

研究发现,具有增强记忆能力的架构如神经图灵机(NTMs)可以快速编码和见多新信息,从而起到消除常规模型的缺点。在本论文中,作者介绍了一种元-模拟学习(Meta-Imitation Learning,MIL)算法,使机器人可以更有效学习如何自我学习,从而在一次演示后即可学得新的技能。与之前的单次学习模拟方法不同的是,这一方法可以扩展到原始像素输入,并且需要用于学习新技能的训练数据明显减少。从在模拟平台和真实的机器人平台上的试验也表明了这一点。

BAIR论文:通过元学习和一次性学习算法,让机器人快速掌握新技能

目标:赋予机器人在只“看过”一次演示的情况下,学习与新物品互动的能力。

做法:

  • 收集大量任务的Demo;

  • 使用元-模拟学习进行训练;

  • 在未知的新任务中进行测试。

BAIR论文:通过元学习和一次性学习算法,让机器人快速掌握新技能

创新内容:在第一个全连接层通过偏差转换增加梯度表现。

BAIR论文:通过元学习和一次性学习算法,让机器人快速掌握新技能

模拟测试环节,这一环节使用算法提供的虚拟3D物品进行模拟,MIL比Contexual和LSTM更好地完成了任务。

BAIR论文:通过元学习和一次性学习算法,让机器人快速掌握新技能

在实际场景测试环节,该团队设计了一个抓取物品并将其放到指定容器中的任务。从上图我们可以看到,在这一环节用于训练的物品与实际测试的物品无论在形状、大小、纹理上都有着差别,MIL算法同样较好地完成了任务。

BAIR论文:通过元学习和一次性学习算法,让机器人快速掌握新技能

雷锋网发现,除了BAIR,Google Deepmind(参见雷锋网(公众号:雷锋网)之前文章《只训练一次数据就能识别出物体,谷歌全新 AI 算法“单次学习”》)、OpenAI也有在进行关于“一次性学习”的研究。“一次性学习”通常被认为是计算机视觉中的对象分类问题,旨在从一个或仅少数几个训练图像中学习关于对象类别的信息,并且已经成功应用到包括计算机视觉和药物研发在内的具有高维数据的领域。今年5月,OpenAI也发布了类似的在虚拟场景下通过一次性学习,完成堆叠方块等任务的论文。

在《人类的由来》中,达尔文这样写道:“人和其他高等动物在精神上的差异虽然很大,但这种差别肯定只是程度上、而非种类上的差别。”而这些在一次性学习和元学习上的研究也证明,当前的人工智能与未来世界的超级人工智能之间的差异,或许也只是程度上的差异,而非种类上的差异。在深度学习发展的过程中,类似的优化看起来只是一小步,但加速化发展的趋势已经很明显:当你在阅读传统期刊上的论文时,在Arxiv上或许已经出现了新的替代版本。或许在不久之后,创造出更聪明、具有适应力的实用机器人并不是难事。

本文作者:岑大师
本文转自雷锋网禁止二次转载,
你可能感兴趣的文章
硬盘接口技术大观园
查看>>
heartbeat高可用软件服务应用指南
查看>>
经验之谈:ping命令诊断网络故障
查看>>
6421B Lab5 路由和远程访问的配置与故障排除
查看>>
寻找Cydia里面软件安装包deb文件的真实下载地址
查看>>
利用反作用力,减负减压轻松快乐学习
查看>>
南昌课程大纲
查看>>
ELK + Filebeat + Nginx 集中式日志分析平台(一)
查看>>
伸展树的学习(五):删除某个特定的结点
查看>>
SVN版本管理工具使用手册
查看>>
DNS服务部署的那点事儿
查看>>
doker 1.12-runc源码逻辑跳转流程分析
查看>>
MDT2012部署系列之11 WDS安装与配置
查看>>
数据库置疑处理文档
查看>>
使用jmeter进行dubbo协议的测试方法
查看>>
win系统下Cygwin 安装和sftp环境搭建
查看>>
python中打印输出date信息
查看>>
【CSS】【10】CSS盒子clear属性和高度
查看>>
Discovery CentOS6.4 issue
查看>>
AI思维:给人类教育的三项启示
查看>>